

A q \cdot A q q \cdot A q q q q \cdot A q q q q q \circ A q q \cdot A q q q q q \cdot A q

Ke ords: $, \ldots, , \ldots, , \ldots, A \in A \in A \in A \in A$

\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$</t

• . **.** . (Ň, ٩. ¶, s x x • x ٩.

Loss of Face

c a contra e contra co

/) **,** * 11¶ **1** • **1** • • • at the second second V • • 11. · · · I and the states of the states VI CINC COL

Intergenerational Famil Conflict

 $\begin{bmatrix} \cdots & \mathbf{A} & \mathbf{e} \\ \mathbf{A} & \mathbf{e} \\ \mathbf{A} & \mathbf{e} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{e} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{e} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf$

Present St d

 $\begin{array}{c} \mathbf{x}^{\mathsf{T}} \mathbf{x}^{\mathsf{T}}$

Method

Participants

 $SD = \dots) (W + 1) (SD = 1), t(\dots) = \dots , p = \dots$

Meas res

Proced re and Data Anal ses

Meas rement Eq i alence Tests

Measurement Equi alence Bet een Asian Americans and European Americans for All Scales

	L,	31	Ч. A. %.[χ (df)	$\Delta \chi$ (Δdf)
l.			r		
		•	··· · ,··[$\sim - \cdot \cdot \cdot (- /)$	() .
WI WI W	./、	.//			$ = \sqrt{ * * \mathbf{t}} = \sqrt{\mathbf{y}} = \mathbf{J} = (\mathbf{x}_1, \mathbf{y}) = \mathbf{y}_1 + \mathbf{y}_2 = \mathbf{y}_2 = y$

Res lts

Descripties and Correlations

Gro p Comparisons

A € C | X 1 A B , M **A**, **e**, **-A** 1 \W X <u>``|</u>|| '| **~**|**~**| . 3 **ц**. . V VA T I · \W A L • 1 I (1 • • • * 15 1 1 I , **A** . . 1 **1** . **L**. . j`, I, A NI ··· `¶[€]I∣I 、、 € , И V * **1** | **1** • ٩ 1 · · · · 11 ſ 1.31.4. Ι ΄ $\mathbf{E} = \mathbf{I} \cdot \left[\mathbf{E} \cdot \left[\mathbf{A} \right] \right] \cdot \left[\mathbf{E} \cdot \left[\mathbf{A} \right] \cdot \left[\mathbf{E} \cdot \left[\mathbf{A} \right] \right] \cdot \left[\mathbf{E} \cdot \left[\mathbf{E} \cdot \left[\mathbf{A} \right] \right] \cdot \left[\mathbf{E} \cdot \left[\mathbf{E} \cdot \left[\mathbf{A} \right] \right] \right] \cdot \left[\mathbf{E} \cdot \left[\mathbf{E} \cdot \left[\mathbf{A} \right] \right] \cdot \left[\mathbf{E} \right] \right] \right] \cdot \left[\mathbf{E} \cdot \left[\mathbf{E} \cdot \left[\mathbf{E} \cdot \left[\mathbf{E} \right] \right] \right] \cdot \left[\mathbf{E} \cdot \left[\mathbf{E} \cdot \left[\mathbf{E} \cdot \left[\mathbf{E} \right] \right] \right] \cdot \left[\mathbf{E} \cdot \left[\mathbf{E} \cdot \left[\mathbf{E} \cdot \left[\mathbf{E} \right] \right] \right] \cdot \left[\mathbf{E} \right] \right] \right] \right] \cdot \left[\mathbf{E} \right] \right] \right] \cdot \left[\mathbf{E} \right] \right] \right] \cdot \left[\mathbf{E} \right] \right] \right] \right] \cdot \left[\mathbf{E} \cdot$

Disc ssion

 $A_{i}, A_{i}, A_{i},$

A
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I</t

 $\begin{pmatrix} \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{A} & \cdot \cdot - \mathbf{A} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{A} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{A} \\ (\cdot \cdot \mathbf{I} & \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot \cdot \mathbf{I} & \cdot \cdot \mathbf{I} \\ \cdot \cdot$

- $. . ., \mathbf{A} \dots, \mathbf{k} \dots, \mathbf{k} \dots, \mathbf{k} \dots, \mathbf{k} \dots, \mathbf{k} \dots$ $. The Counseling Ps chologist, 29, \dots, 1$. . **.** . . . /

- The Counseling Ps chologist, 29, ..., u..., (). Principles and practice of structural equation modeling. A A ..., (). International Journal of Intercultural Relations, 29, ..., u ,

- , \ldots , \ldots , $\overset{\circ}{}_{1}$, $\overset{\circ}{$
- $\begin{array}{c} 1 \\ \vdots \\ \vdots \\ \vdots \\ H \\ \vdots \\ \vdots \\ 1 \\ \end{array}$